;S%Lﬁlfxs SLI:MMIITiZOZ

i R o



The two classic we

Cache detection

ABSTRACT

We describe a class of attacks that can compromise the privacy of
users’ Web-browsing histories. The attacks allow a malicious Web
site to determine whether or not the user has recently visited some
other, unrelated Web page. The malicious page can determine this
information by measuring the time the user’s browser requires to
perform certain operations. Since browsers perform various forms
of caching, the time required for operations depends on the user’s
browsing history; this paper shows that the resulting time variations
convey enough information to compromise users’ privacy. This at-
tack method also allows other types of information gathering by
Web sites, such as a more invasive form of Web “cookies”. The
attacks we describe can be carried out without the victim’s knowl-
edge, and most “anonymous browsing” tools fail to prevent them.
Other simple countermeasures also fail to prevent these attacks. We
describe a way of reengineering browsers to prevent most of them.

Timing Attacks on Web Privacy

Edward W. Felten and Michael A. Schneider
Secure Internet Programming Laboratory
Department of Computer Science
Princeton University
Princeton, NJ 08544 USA

.

Standard Web “anonymization™ services do not prevent the
attacks; in many cases they actually make the attacks worse.

Disabling browser features such as Java, JavaScript, and client-
side caching do not prevent the attacks.

The only effective ways we know to prevent the attacks re-
quire either an unacceptable slowdown in Web access, or a
modification to the design of the browser.

Even modifying the browser design allows only a partial rem-
edy; several attacks remain possible.

1.1 Why Web Privacy Matters

There is now widespread concern about the privacy of users’ ac-
tivities on the World-Wide Web. The list of Web locations visited
by a user often conveys detailed information about the user’s fam-

b information leaks

Browsing history detection

ily, financial or health situation. C , users often consider

Bug 57351 Opened 21yearsago Closed 19 years ago

css on a:visited can load an image and/or reveal if visitor been to a site

» Categories (Core :: Security, defect, P3)

» Tracking (bug has been fixed and VERIFIED for Firefox 1.2alpha which is i the backlog of work)
» People (Reporter: jruderman, Assigned: security-bugs)

» References (URL)

» Details (Keywords: privacy, testcase)

» Attachments (3 files)

Bottom &  Tagsv  Timeline v

Jesse Ruderman N

Description « 21 years ago
a:visited { background-image: url(http://localhost/); }

generates a hit in my local server's log only when I visit a page containing
visited links.

a:visited { display: none; }

generates a hit only when the link it _not_ visited.

Felten & Schneider, ACM CCS, 2000

Jesse Ruderman, Mozilla bug #57351, 2000



https://dl.acm.org/doi/abs/10.1145/352600.352606
https://bugzilla.mozilla.org/show_bug.cgi?id=57351

The (ancient) problems with :visited

Styling visited links differently than unvisited links gives any website 1 bit of
information about the user's browsing (whether the user visited a URL or not).

e Detectable with JS (getComputedStyle()) or without (background-image: url(...))
High-speed detection (~30k URLs/s) of any URL visited in a top-level window:

e Search queries, location information, user IDs on social networks, etc.

CSS visited pages disclosure FRIDAY, AUGUST 11, 2006 ABOUT ME

From: Andrew Clover <and () doxdesk com>
Date: Wed, 20 Feb 2002 10:06:45 +0000

| know where you've been

Vendor: various
Risk: low

Backaromd Update 2: CSS History Hack Demonstration code available. Thank you

In http://wa. cs.princeton.edu/sip/pub/webtining.pdf , Felten and to RSnake for hosting.
Schneider outline a method for pages on an attacking server to Jeremiah Grossman's career
b

detect whether pages on another server have been visited, by
trying to fetch a URL from the target server and using the time spans nearly 20 years and has
lived a literal lifetime in

taken to fetch it to guess whether the URL was in the browser's Update: Removed the JS PoC from the template and pasted it below.
computer security to become

local cache. 7
Was messing up IE.
one of the industry's biggest

[3 Jeremiah Grossman

A method is also suggested to use the browser cache, read this
way, as a store for persistent user data ("cache cookies").

S chmptar, more acearate, ond more. ssaily shored thon the tining I updated the blog template to display some proof-of-concept names. He has received a
‘:::ks described dn the above paper. browser history stealing JavaScript code. On the right side column number of industry awards,
— notice the "I know where you've been" heading. Below that, if your been publicly thanked by
bl Lt i b e o il using Firefox, Mozilla, Netscape or Safari, you should see a bunch of Microsoft, Mozilla, Google,
e e e e links to websites you've been to. Don't worry, I'm not capturing this Facebook, and many others




The % mitigation (2010)

tl;dr ("Effects on web pages")

e It makes getComputedStyle (and similar functions such as
querySelector) lie by acting as though all links are unvisited.

e It makes certain CSS selectors act as though links are always
unvisited, even when they are visited.

e It limits the CSS properties that can be used to style visited
links to color, backaround-color, border-*-color, outline-color,
column-rule-color ...

visited > window.getComputedStyle(document.links[1]).color
unvisited "rgb(0, 0, 238)"

Preventing attacks on a user's history
through CSS :visited selectors

L. David Baron, Mozilla Corporation

Proposed solution

The approach, in more detail, is as follows: there is at most one element whose presence
in the user’s history can affect the style of a node: call this the node's relevant link. If the
node is a link, its relevant link is itself. Otherwise, it is the node's nearest ancestor that is a
link, or, if there is no such ancestor, there is no relevant link.

For every node, instead of computing its style by matching selectors against :link and
:visited based on whether links are in the user’s history, we first compute the style by
matching selectors as though all links are unvisited. (This produces an object representing
the computed style for the element which, in our code, is called an nsstylecontext.) Then,
if the node has a relevant link, we compute style a second time on the assumption that the
relevant link is visited and all other links are unvisited. This produces a second
nsStyleContext, which we give the first style context a pointer to (called its style-if-visited).
We also record in the first style context whether the relevant link was visited. We then
handle all dynamic changes to the document or style that would require either of these
style contexts to be updated by updating them as needed.

All code except code that is specifically intended to use style based on the history uses
the first style context, as all of our existing code does. This causes getComputedstyle and
other related functions to lie about whether links are in the user's history.

Then, we make the properties that Web pages should be able to style differently for visited
links (color, background-color, border-*-color, outline-color, column-rule-color, fill,
and stroke) opt in to getting the styles for visited links by having the code that implements
the drawing for these properties get the color to draw through a function that combines the
data from the two style contexts based on whether the relevant link is visited. If the
relevant link is not visited, this function returns the color from the first (normal) style
context. If the relevant link is visited, it returns a color whose R (red), G (green), and B
(blue) components come from the second style context (the style-if-visited) but whose A
(alpha) component comes from the first. However, there is one exception to the second
rule (to handle the case where the first style context has a usable color and the second
style context has a color whose alpha is 0, such as transparent, which doesn't have
meaningful R, G, and B components): if the color in the style-if-visited has an A
component of 0, then the color from the normal style is always used.

It's worth noting that depending on when an implementation starts image loads for images
referenced from CSS, the images that are referenced from the if-visited styles for
background-image, etc., might still be loaded. However, it's important that the
implementation ensure that either they're never loaded (preferable), or that they're always
loaded at the same time whether or not links are visited.


https://dbaron.org/mozilla/visited-privacy#web-developers
https://developer.mozilla.org/en/CSS/color
https://developer.mozilla.org/en/CSS/background-color
https://developer.mozilla.org/en/CSS/border-top-color
https://developer.mozilla.org/en/CSS/outline-color
https://developer.mozilla.org/en/CSS/-moz-column-rule-color

The (current) problems with :visited

A large and growing number of attacks that bypass existing mitigations.

Including:

1. Attacks based on user interaction with the page

2. Timing attacks

3. Attacks based on revealing the color of a single pixel
4. Process-level attacks



Attacks based on user interaction: #1

Weinberg et al, S&P 2011: I still know what you visited last summer

Please click on all of the chess pawns. Please type the string of characters shown below, then press The large image on the left was assembled from two of the
RETURN. You don’t have to match upper and lower case. small images on the right: one from the first row and one
from the second. Please click on the two small images that
FAYA SABA R-E5 A9-5 make up the large one.

n R il

l ~ng

M’/

Fig. 3. 7-segment LCD symbols stacked to test three links per composite
character. The - at the bottom is always visible, but the 4, 5, and F are only
visible if a URL was visited.



https://ieeexplore.ieee.org/abstract/document/5958027

Attacks based on user interaction: #2

Michal Zalewski, 2013: "Asteroids" game

Defend Your Spaceship! Score: 0



https://lcamtuf.coredump.cx/yahh/

Attacks based on user interaction: #3

Michal Zalewski, 2016: mix-blend-mode whack-a-mole

“This 1s a personal blog. My other stuff: book | home page | TWIEr | prepping | CNC robotics | electronics

CSS mix-blend-mode is bad for your browsing history " .
https:/flcamtuf.coredumg

Up until mid-2010, any rogue website could get a good sense of your browsing habits by specifying a distinctive e C (il o

visited CSS pseudo-class for any links on the page, rendering thousands of interesting URLS off-screen, and then
calling the getComputedStyle AP to figure out which pages appear in your browser's history. Whack-a-mole! Icamtuf.coredump.cx says

x o 3 7 : i 3 All done!
After some deliberation, browser vendors have closed this loophole by disallowing almost all attributes in :visited

selectors, spare for the fairly i ability to alter fo; d and background colors for such links. The Websites you visited

APIs have been also redesigned to prevent the disclosure of this color information via getComputedStyle.
https://www.amazon.com/
This workaround did not fully eliminate the ability to probe your browsing history, but limited it to scenarios

where the user can be tricked into unwittingly feeding the style information back to the website one URL at a time. Not visited.

Several fairly convincing attacks have been demonstrated against patched browsers - my own 2013 entry can be

https://www.cnn.com/

httne-linaws vieamhinatar cam!

found here - but they generally depended on the ability to solicit one click or one keypress per every URL tested. In

other words, the whole thing did not scale particularly well.

Or at least, it wasn't supposed to. In 2014, I described a neat trick that exploited normally imperceptible color

quantization errors within the browser, amplified by stacking elements hundreds of times, to implement an n-to-
2" decoder circuit using just the background-color and opacity properties on overlaid <a href=...> elements to
easily probe the browsing history of multiple URLs with a single click. To explain the basic principle, imagine

wanting to test two links, and dividing the screen into four regions, like so:

* Region #1is lit only when both links are not visited (- link_a A - link_b),
* Region #2 is lit only when link A is not visited but link B is visited (- link_a A link_b),
« Region #3 is lit only when link A is visited but link B is not (link_a A - link_b),

* Region #4 is lit only when both links are visited (link_a A link_b).


https://lcamtuf.blogspot.com/2016/08/css-mix-blend-mode-is-bad-for-keeping.html

Attacks based on user interaction: #4

Ron Masas, 2021: The human side channel

Leaking Your Browser History

Links can have different colors based on whether or not you've visited the page they
reference. Unfortunately, this behavior can be easily exploited. With a bit of CSS, we can turn
the link into a single pixel reflecting this boolean result, and then, we could use one of the
techniques I've discussed above to trick the user into leaking it.

Yes

URL

https://www.youtube.com/

Did | Visit That Page?



https://ronmasas.com/posts/the-human-side-channel

Timing attacks #1:

Paul Stone, BlackHat 2013: Pixel Perfect Timing Attacks with HTML5
NDevTK: ndev.tk/visted

requestAnimationFrame History Sniffing Timing Attack #2

* Make N link elements with text-shadow
» For each URL:
» Update link hrefs to URL
* Time next frame with requestAnimationFrame
« If frame was slow, link is visited
» Update link hrefs to non-visited URL

» Can use it fo measure frame rate of
web page

* If JS or rendering is too slow, frame rate
will drop

» Canrendering time be used for a
timing attack?



https://owasp.org/www-pdf-archive//HackPra_Allstars-Browser_Timing_Attacks_-_Paul_Stone.pdf
http://ndev.tk/visted

Timing attacks #2: High-speed timings in multiple APIs

Michael Smith et al, USENIX WOOT 2018: Browser history re:visited

Attack: CSS 3D transforms = Attack: SVG £il1-coloring
-
Attacker makes a link expensi image inside alink
i . 0 to render with CSS 3D transforms Attacker sets £111-styles to change
If https://ashleymadison.com is... T
Attacker rapidly toggles the
ic1 1c1 link’s destination between a Attacker rapidly toggles the
...Unvist ted ... VISI ted dummy URL and a target URL link’s destination between a
dummy URL and a target URL
[Attacker creates link pointing to Attacker creates link pointing to e oo T lm's of expensive
ttps /{ ummy.com; visited = false ttp s:/ {dummy com; visited = false re-render the link rerenders for the link Browser doesn’t need to Browser does lots of expensive
; : : . -render the link -renders for the link
e T S ADEfor AR STOW e render the IOk IR FESrenlers fof e ik NS
[ Browser does mmal paint of link ] [ Browser does lmtla] paint of link ] * *
), .. s P T
—”Browser calls pamtlet s paint method ] [ Browser calls pamtlet s paint method H— unvisited visited unvisited visited
Attacker updates lmk to point to Attacker updates lmk to point to :
https://ashleymadison.com; https://ashleymadison.com; Attack: ]avaSCr]pt bytecode cache
visited remains false wsned becomes true, mvalldates link

4 APIs, 4 attacks

B s i ] ::‘:a:ﬁ;‘:é::;igiﬁvsﬂ;’;:e " e CSS Paint API
(Browser calls paintlet’s paint method Jeffe E ! . e CSS 3D transforms
e SVG £ill-coloring

e JavaScript bytecode cache

Attacker measures script’s
compilation time

r 1
[Browser has to compile script ] [Browser has script’s bytecode in }

from scratch cache, skips most of compilation
- compilation time is LONG - compilation time is SHORT

\ \

unvisited visited



https://www.usenix.org/sites/default/files/conference/protected-files/woot18_slides_smith.pdf

Timing attacks #3: Known WONTFIX'ed bugs

Chromium:
o crbug/252165: Visited links detectable via redraw timing
o crbug/835590: Complicated CSS effects and :visited selector leak browser
history through paint timing
m Duped against 713521: Eliminate :visited privacy issues once and for all

Bonus #1: SharedArrayBuffer now allows building high-resolution timers:
https://antoinevastel.com/security/privacy/2017/04/09/history-stealing.html

Bonus #2: It's not just timings, visitedness can leak in other indirect ways:
crbug/1205981: Visited links leak via CSS transitions and the transitionrun event
Manuel Caballero: MS Edge webkitTextFillColor :visited leak



https://bugs.chromium.org/p/chromium/issues/detail?id=252165
https://bugs.chromium.org/p/chromium/issues/detail?id=835590
https://bugs.chromium.org/p/chromium/issues/detail?id=1205981
https://antoinevastel.com/security/privacy/2017/04/09/history-stealing.html
https://bugs.chromium.org/p/chromium/issues/detail?id=1205981
https://www.brokenbrowser.com/css-history-leak/

Pixel color attacks #1: Ambient light sensor

Lukasz Olejnik, 2017, Stealing sensitive browser data with the W3C Ambient Light Sensor API
Cross-origin data leaks via the ambient light sensor: arturjanc.com/Is

All the readings below were measured with screen brightness at 50% in a relatively bright room.

Log

viki/Main_Page

jemo.html?demo=histor

Black: 45 lux. White: 49 lux.
Black: 19 lux. White: 23 lux. Black: 145 lux. White: 158 lux. (Light reflected off the bottom edge of monitor.)



http://www.youtube.com/watch?v=Rg0LQ3npkP0
https://blog.lukaszolejnik.com/stealing-sensitive-browser-data-with-the-w3c-ambient-light-sensor-api/
http://arturjanc.com/ls

Pixel color attacks #2:

arturjanc.com/eyedropper

Instructions

1. Open up your browser's color picker dialog by clicking here: M

2. In the color dialog, click on the eyedropper icon: &

3. Click on the square below:

Results

Detected pages in browsing history
httr)s WWW. instagram.com

https //en.wiki] lklpedla org/wiki/Main Page
https: / artunanr com/eyedropper,

https [[WWW. youtube com/
https://github.com/WICG/eyedropper-
api/issues/13

https://wikileaks.org/

#DAS5FB

Pages not visited
https://edition.cnn.com/

https://arturjanc.com/s/unvisited?definitely-not-

https /mews. ycombmator com/
https://mail.google.com/mail/u/0/

_4 v.netﬂlx com/browse
bay. com/

https:/,
https: //www nytimes. comz

Vs W N

eyedropper

Use :B(Cb, Cs) |[Cb - Cs|
Set background to #FFFFFF, subtract each link's color.
Non-visited links have a background-color of #000000
Visited links have unique colors (a mask with a single set bit).
If the final color is:

a. 255 -> No links visited.

b. 126 =(255-128 - 1) -> First and last links visited.

c.  0-> All links visited.
Each color selection reveals 24 bits of history.



http://arturjanc.com/eyedropper

Pixel color attacks #3: Other APIs

Existing APIs that disclose real contents of the user's viewport:

<input type="color">

Screen Capture API: navigator.mediaDevices.getDisplayMedia()
Color picker APIs in browsers' developer tools

Screenshot functionality in browsers' developer tools

Several proposed new, "more convenient" APIs:

getCurrentBrowsingContextMedia: Casting a video of the current tab.
CaptureScreenshot: Like above, but just a screenshot.

EyveDropper API: Select a color from anywhere on the screen.
L2



https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/color
https://developer.mozilla.org/en-US/docs/Web/API/Screen_Capture_API/Using_Screen_Capture
https://docs.google.com/document/d/1cjoNFpv5ttYjuhAjKqIIMgKVjDX08Ggtw65tUoggGRU/edit#
https://docs.google.com/document/d/1cjoNFpv5ttYjuhAjKqIIMgKVjDX08Ggtw65tUoggGRU/edit#
https://github.com/WICG/eyedropper-api

Process-level attacks

Chromium's Post-Spectre Threat Model Re-Think:

Conclusion

For the reasons above, we now assume any active code can read any data in the same address space. The plan going forward must be
to keep sensitive cross-origin data out of address spaces that run untrustworthy code, rather than relying on in-process checks.

Attack #1: Leak the contents of the renderer memory with Spectre]S:
e :visited links still work in cross-origin isolated mode (COOP+COEP)

Attack #2: Renderer compromises without a sandbox escape.


https://chromium.googlesource.com/chromium/src/+/refs/heads/main/docs/security/side-channel-threat-model.md
http://leaky.page




Why should we finally fix :visited?

For security:

The status quo is that any website can learn the user's browsing history. That's embarrassing.
For privacy:

Browsing history is global state which allows linking identity across third-party contexts.

For convenience:

To remove ugly hacks in browsers' CSS implementations and to unblock the shipping of new APIs
that would otherwise leak browsing history: screenshots, tab casting, eyedropper color tools, etc.

e These APIs will likely still need to be gated behind cross-origin isolation (COOP+COEP).



How should we fix :visited?

There is a fairly long track record of proposals to address these issues:

e crbug/713521: Eliminate :visited privacy issues once and for all
e csswg-drafts #3012: Solve :visited once and for all
e [Google-internal] Rethinking :visited-ness

Practically, we should probably just cut the Gordian knot and store history
per-origin, or (for privacy) per-storage partition.


https://bugs.chromium.org/p/chromium/issues/detail?id=713521
https://github.com/w3c/csswg-drafts/issues/3012
https://docs.google.com/document/d/14TnE8z-AiPOVig6R6S1LSf0NdpJmH3FHPCfS1zgy4wg/edit#heading=h.vynaw562mn5o




