

The two classic web information leaks

Cache detection

Felten & Schneider, ACM CCS, 2000

Browsing history detection

Jesse Ruderman, Mozilla bug #57351, 2000

https://dl.acm.org/doi/abs/10.1145/352600.352606
https://bugzilla.mozilla.org/show_bug.cgi?id=57351

The (ancient) problems with :visited

Styling visited links differently than unvisited links gives any website 1 bit of
information about the user's browsing (whether the user visited a URL or not).

● Detectable with JS (getComputedStyle()) or without (background-image: url(...))

High-speed detection (~30k URLs/s) of any URL visited in a top-level window:

● Search queries, location information, user IDs on social networks, etc.

The fix mitigation (2010)

 tl;dr ("Effects on web pages")

● It makes getComputedStyle (and similar functions such as
querySelector) lie by acting as though all links are unvisited.

● It makes certain CSS selectors act as though links are always
unvisited, even when they are visited.

● It limits the CSS properties that can be used to style visited
links to color, background-color, border-*-color, outline-color,
column-rule-color …

https://dbaron.org/mozilla/visited-privacy#web-developers
https://developer.mozilla.org/en/CSS/color
https://developer.mozilla.org/en/CSS/background-color
https://developer.mozilla.org/en/CSS/border-top-color
https://developer.mozilla.org/en/CSS/outline-color
https://developer.mozilla.org/en/CSS/-moz-column-rule-color

The (current) problems with :visited

A large and growing number of attacks that bypass existing mitigations.

Including:

1. Attacks based on user interaction with the page
2. Timing attacks
3. Attacks based on revealing the color of a single pixel
4. Process-level attacks

Attacks based on user interaction: #1

Weinberg et al, S&P 2011: I still know what you visited last summer

https://ieeexplore.ieee.org/abstract/document/5958027

Attacks based on user interaction: #2

Michal Zalewski, 2013: "Asteroids" game

https://lcamtuf.coredump.cx/yahh/

Attacks based on user interaction: #3

Michal Zalewski, 2016: mix-blend-mode whack-a-mole

https://lcamtuf.blogspot.com/2016/08/css-mix-blend-mode-is-bad-for-keeping.html

Attacks based on user interaction: #4

Ron Masas, 2021: The human side channel

https://ronmasas.com/posts/the-human-side-channel

Timing attacks #1: requestAnimationFrame

Paul Stone, BlackHat 2013: Pixel Perfect Timing Attacks with HTML5
NDevTK: ndev.tk/visted

https://owasp.org/www-pdf-archive//HackPra_Allstars-Browser_Timing_Attacks_-_Paul_Stone.pdf
http://ndev.tk/visted

Timing attacks #2: High-speed timings in multiple APIs

Michael Smith et al, USENIX WOOT 2018: Browser history re:visited

https://www.usenix.org/sites/default/files/conference/protected-files/woot18_slides_smith.pdf

Timing attacks #3: Known WONTFIX'ed bugs

Chromium:
○ crbug/252165: Visited links detectable via redraw timing
○ crbug/835590: Complicated CSS effects and :visited selector leak browser

history through paint timing
■ Duped against 713521: Eliminate :visited privacy issues once and for all

Bonus #1: SharedArrayBuffer now allows building high-resolution timers:
https://antoinevastel.com/security/privacy/2017/04/09/history-stealing.html

Bonus #2: It's not just timings, visitedness can leak in other indirect ways:
crbug/1205981: Visited links leak via CSS transitions and the transitionrun event
Manuel Caballero: MS Edge webkitTextFillColor :visited leak

https://bugs.chromium.org/p/chromium/issues/detail?id=252165
https://bugs.chromium.org/p/chromium/issues/detail?id=835590
https://bugs.chromium.org/p/chromium/issues/detail?id=1205981
https://antoinevastel.com/security/privacy/2017/04/09/history-stealing.html
https://bugs.chromium.org/p/chromium/issues/detail?id=1205981
https://www.brokenbrowser.com/css-history-leak/

Pixel color attacks #1: Ambient light sensor

Łukasz Olejnik, 2017, Stealing sensitive browser data with the W3C Ambient Light Sensor API
Cross-origin data leaks via the ambient light sensor: arturjanc.com/ls

http://www.youtube.com/watch?v=Rg0LQ3npkP0
https://blog.lukaszolejnik.com/stealing-sensitive-browser-data-with-the-w3c-ambient-light-sensor-api/
http://arturjanc.com/ls

Pixel color attacks #2: <input type="color"> eyedropper

arturjanc.com/eyedropper
1. Use mix-blend-mode: difference: B(Cb, Cs) = |Cb - Cs|
2. Set background to #FFFFFF, subtract each link's color.

3. Non-visited links have a background-color of #000000
4. Visited links have unique colors (a mask with a single set bit).

5. If the final color is:

a. 255 -> No links visited.

b. 126 = (255 - 128 - 1) -> First and last links visited.

c. 0 -> All links visited.

6. Each color selection reveals 24 bits of history.

http://arturjanc.com/eyedropper

Pixel color attacks #3: Other APIs

Existing APIs that disclose real contents of the user's viewport:

● <input type="color">
● Screen Capture API: navigator.mediaDevices.getDisplayMedia()
● Color picker APIs in browsers' developer tools
● Screenshot functionality in browsers' developer tools

Several proposed new, "more convenient" APIs:

● getCurrentBrowsingContextMedia: Casting a video of the current tab.
● CaptureScreenshot: Like above, but just a screenshot.
● EyeDropper API: Select a color from anywhere on the screen.
● …?

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/color
https://developer.mozilla.org/en-US/docs/Web/API/Screen_Capture_API/Using_Screen_Capture
https://docs.google.com/document/d/1cjoNFpv5ttYjuhAjKqIIMgKVjDX08Ggtw65tUoggGRU/edit#
https://docs.google.com/document/d/1cjoNFpv5ttYjuhAjKqIIMgKVjDX08Ggtw65tUoggGRU/edit#
https://github.com/WICG/eyedropper-api

Process-level attacks

Chromium's Post-Spectre Threat Model Re-Think:

Conclusion

For the reasons above, we now assume any active code can read any data in the same address space. The plan going forward must be
to keep sensitive cross-origin data out of address spaces that run untrustworthy code, rather than relying on in-process checks.

Attack #1: Leak the contents of the renderer memory with SpectreJS:

● :visited links still work in cross-origin isolated mode (COOP+COEP)

Attack #2: Renderer compromises without a sandbox escape.

https://chromium.googlesource.com/chromium/src/+/refs/heads/main/docs/security/side-channel-threat-model.md
http://leaky.page

…

Why should we finally fix :visited?

For security:

The status quo is that any website can learn the user's browsing history. That's embarrassing.

For privacy:

Browsing history is global state which allows linking identity across third-party contexts.

For convenience:

To remove ugly hacks in browsers' CSS implementations and to unblock the shipping of new APIs
that would otherwise leak browsing history: screenshots, tab casting, eyedropper color tools, etc.

● These APIs will likely still need to be gated behind cross-origin isolation (COOP+COEP).

How should we fix :visited?

There is a fairly long track record of proposals to address these issues:

● crbug/713521: Eliminate :visited privacy issues once and for all
● csswg-drafts #3012: Solve :visited once and for all
● [Google-internal] Rethinking :visited-ness

Practically, we should probably just cut the Gordian knot and store history
per-origin, or (for privacy) per-storage partition.

https://bugs.chromium.org/p/chromium/issues/detail?id=713521
https://github.com/w3c/csswg-drafts/issues/3012
https://docs.google.com/document/d/14TnE8z-AiPOVig6R6S1LSf0NdpJmH3FHPCfS1zgy4wg/edit#heading=h.vynaw562mn5o

